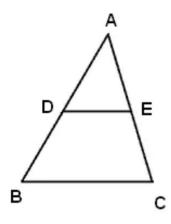
Chapter 16. Similarity

Ex 16.1

Answer 1.



(i) In ΔADE and ΔABC

 \Rightarrow × = 11

$$\angle D = \angle B \text{ and } \angle C = \angle E$$
 (DE||BC)
 $\Rightarrow \triangle ADE \sim \triangle ABC$
 $\therefore \frac{AD}{DB} = \frac{AE}{EC}$
 $\Rightarrow \frac{4}{x-4} = \frac{8}{3x-19}$
 $\Rightarrow 4x(3x-19) = 8x(x-4)$
 $\Rightarrow 12x-76 = 8x-32$
 $\Rightarrow 4x = 44$

$$\angle D = \angle B \text{ and } \angle C = \angle E$$
 (DE||BC)

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{4}{5} = \frac{AE}{2.5}$$

$$\Rightarrow AE = \frac{4 \times 2.5}{5}$$

(iii) In Δ ADE and Δ ABC

$$\angle D = \angle B$$
 and $\angle C = \angle E$ (DEIIBC)

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$$

$$\Rightarrow$$
 (4x - 3)x(5x - 3) = (8x - 7)x(3x - 1)

$$\Rightarrow$$
 20x² - 15x - 12x + 9 = 24x² - 21x - 8x + 7

$$\Rightarrow$$
 20x² - 27x + 9 = 24x² - 29x + 7

$$\Rightarrow$$
 4x² - 2x - 2 = 0

$$\Rightarrow x(x-1) + \frac{1}{2}(x-1) = 0$$

$$\Rightarrow (x + \frac{1}{2}) = 0; x - 1 = 0$$

$$\Rightarrow x = -\frac{1}{2}; x = 1$$

$$\therefore \times = 1$$

(iv) In ΔADE and ΔABC

$$\angle D = \angle B$$
 and $\angle C = \angle E$ (DE||BC)

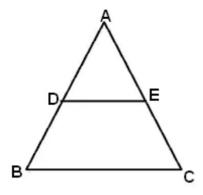
$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{8}{4} = \frac{12}{EC}$$

$$\Rightarrow$$
 8 x EC = 12 x 4

$$\Rightarrow$$
 EC = $\frac{12 \times 4}{8}$

Answer 2.



(i) AB=5.6 cm, AD=1.4 cm, AC=7.2 cm and AE=1.8 cm

$$\frac{AD}{AB} = \frac{1.4}{5.6} = \frac{7}{28} = \frac{1}{4}$$
AE 1.8 2 1

$$\frac{AE}{AC} = \frac{1.8}{7.2} = \frac{2}{8} = \frac{1}{4}$$

$$\Rightarrow \frac{\mathsf{AD}}{\mathsf{AB}} = \frac{\mathsf{AE}}{\mathsf{AC}}$$

∴ ΔADE ~ ΔABC

$$\Rightarrow \angle D = \angle B; \angle E = \angle C$$

But these are corresponding angles

Hence, DE||BC

AD = AB - BD = 10.8 - 4.5 = 6.3 cm

$$\frac{AD}{AB} = \frac{6.3}{10.8} = \frac{21}{36} = \frac{7}{12}$$

$$\frac{AE}{AC} = \frac{2.8}{4.8} = \frac{14}{24} = \frac{7}{12}$$

$$\Rightarrow \frac{\mathsf{AD}}{\mathsf{AB}} = \frac{\mathsf{AE}}{\mathsf{AC}}$$

∴ ∆ADE ~ ∆ABC

$$\Rightarrow$$
 \angle D = \angle B; \angle E = \angle C

But these are corresponding angles

Hence, DE||BC

(iii) AD = 5.7 cm, BD = 9.5 cm, AE = 3.3 cm and EC = 5.5 cm

$$\frac{AD}{BD} = \frac{5.7}{9.5} = 0.6$$

$$\frac{AE}{FC} = \frac{3.3}{5.5} = \frac{3}{5} = 0.6$$

$$\Rightarrow \frac{AD}{BD} = \frac{AE}{EC}$$

$$\Rightarrow$$
 \angle D = \angle B; \angle E = \angle C

But these are corresponding angles

Hence, DE||BC

Answer 3.

(i) Since PQ||BC

$$\frac{AP}{PB} = \frac{AQ}{QQ}$$

$$\Rightarrow \frac{AP}{AB - AP} = \frac{AQ}{OC}$$

$$\Rightarrow \frac{2}{5} = \frac{AQ}{10}$$

$$\Rightarrow AQ = \frac{2 \times 10}{5}$$

- \Rightarrow AQ = 4
- (ii) Since PQ||BC

$$\frac{AP}{AB} = \frac{PQ}{BC}$$

$$\Rightarrow \frac{2}{7} = \frac{PQ}{21}$$

$$\Rightarrow$$
 PQ = $\frac{2 \times 21}{7}$

 \Rightarrow PQ = 6

Answer 4.

(i) Since DE||BC

$$\frac{DE}{BC} = \frac{AD}{AB}$$

$$\Rightarrow \frac{3}{8} = \frac{AD}{AB} \Rightarrow \frac{AD}{AB} = \frac{3}{8}$$

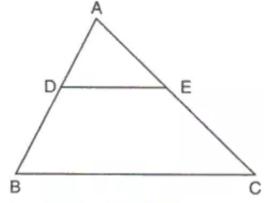
(ii) DE:BC=3:8

$$\frac{DE}{DC} = \frac{AE}{AC}$$

$$\Rightarrow \frac{3}{8} = \frac{AE}{16}$$

$$\Rightarrow AE = \frac{3 \times 16}{8}$$

Answer 5.



Considering DE | BC

(i)
$$\frac{AD}{DB} = \frac{AE}{EC}$$

 $\Rightarrow \frac{AE}{EC} = \frac{AD}{DB}$
 $\Rightarrow \frac{AE}{EC} = \frac{5}{7}$

(ii)
$$\frac{AD}{DB} = \frac{5}{7}$$

 $\therefore AB = AD + DB$
 $\Rightarrow AB = 5 + 7 = 12$
 $\therefore \frac{AD}{AB} = \frac{5}{12}$

(iii)
$$\frac{AD}{DB} = \frac{AE}{EC}$$

 $\Rightarrow \frac{AE}{EC} = \frac{AD}{DB}$
 $\Rightarrow \frac{AE}{EC} = \frac{5}{7}$
 $\therefore AC = AE + EC$
 $\Rightarrow AC = 5 + 7 = 12$
 $\therefore \frac{AE}{AC} = \frac{5}{12}$

(iv) Since DE||BC

$$\frac{AD}{AB} = \frac{DE}{BC}$$

$$\Rightarrow \frac{5}{12} = \frac{2.5}{BC}$$

$$\Rightarrow BC = \frac{2.5 \times 12}{5}$$

$$\Rightarrow BC = 6cm$$

(v) Since DE||BC

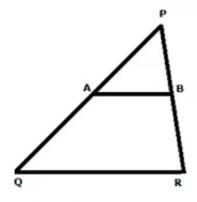
$$\frac{AD}{AB} = \frac{DE}{BC}$$

$$\Rightarrow \frac{5}{12} = \frac{DE}{4.8}$$

$$\Rightarrow DE = \frac{5 \times 4.8}{12}$$

$$\Rightarrow BC = 2cm$$

Answer 6.



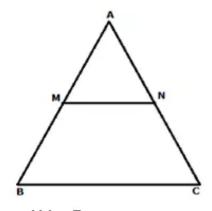
$$\frac{AP}{PQ} = \frac{PB}{PR}$$

$$\Rightarrow \frac{AP}{9} = \frac{4.2}{6}$$

$$\Rightarrow AP = \frac{4.2 \times 9}{6}$$

$$\Rightarrow AP = 6.3cm$$

Answer 7.



(i)
$$\frac{AM}{AB} = \frac{5}{7}$$

 $\therefore AB = 3.5 \text{cm}$
 $\therefore AM = \frac{5 \times AB}{7}$
 $\Rightarrow AM = \frac{5 \times 3.5}{7}$
 $\Rightarrow AM = 2.5 \text{cm}$

(ii) Since MN||BC and
$$\frac{AM}{MB} = \frac{AN}{NC}$$

$$\therefore$$
 MB = AB - AM = 3.5 - 2.5 = 1cm

$$\Rightarrow \frac{AM}{MB} = \frac{AN}{NC}$$

$$\Rightarrow \frac{2.5}{1} = \frac{AN}{2}$$

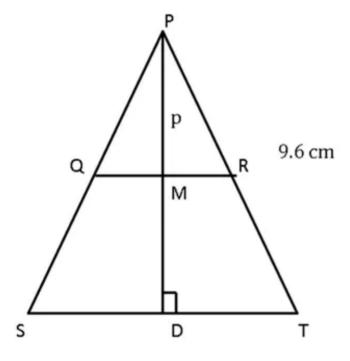
$$\Rightarrow AN = \frac{2.5 \times 2}{1} = 5cm$$

Now,

$$AC = AN + NC$$

$$\Rightarrow$$
 AC = 5 + 2 = 7cm

Answer 8.



Since QR is parallel to ST,

By Basic Theorem of Proportionality,

$$\frac{PQ}{PS} = \frac{PR}{PT}$$

$$\Rightarrow \frac{3}{4} = \frac{PR}{9.6}$$

$$\Rightarrow$$
 PR = $\frac{9.6 \times 3}{4}$ = 7.2 cm

Since QR is parallel to ST,

QM || SD

By Basic Theorem of Proportionality,

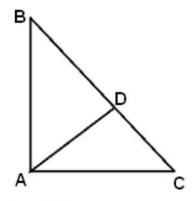
$$\frac{PQ}{PS} = \frac{PM}{PD}$$

$$\Rightarrow \frac{3}{4} = \frac{p}{PD}$$

$$\Rightarrow$$
 PD = $\frac{4p}{3}$

So, the length of the perpendicular from P to ST in terms of p is $\frac{4p}{3}$.

Answer 9.



In AABC,

Using Pythagoras theorem

$$BC^2 = AB^2 + AC^2$$

$$BC^2 = 8^2 + 6^2$$

$$BC^2 = 64 + 36$$

BC =
$$\sqrt{100}$$
 = 10.....(i)

In ΔABD,

Using Pythagoras theorem

$$AD^2 = AB^2 - BD^2$$

 $AD^2 = 8^2 - BD^2$(ii)

In ΔACD,

Using Pythagoras theorem

$$AD^{2} = AC^{2} - CD^{2}$$

 $AD^{2} = 6^{2} - CD^{2}$(iii)
Equating (ii) and (iii)
 $8^{2} - BD^{2} = 6^{2} - CD^{2}$
 $\therefore CD = BC - BD$
 $8^{2} - BD^{2} = 6^{2} - (BC - BD)^{2}$

$$CD = BC - BD$$

$$BC = 10cm(from(i))$$

$$8^2 - BD^2 = 6^2 - (10 - BD)^2$$

$$8^2 - BD^2 = 6^2 - (100 - 20BD + BD^2)$$

$$64 - BD^2 = 36 - 100 + 20BD - BD^2$$

$$64 = -64 + 20BD$$

$$20BD = 128$$

$$BD = 6.4cm$$

Answer 10.

In \triangle PRT and \triangle SQT

$$\angle PTR = \angle STQ$$
 (vertically opposite angles)

$$\angle RPT = \angle SQT$$
 (alternate angles $\therefore PR||SQ$)

$$\Rightarrow \frac{\mathsf{RT}}{\mathsf{PT}} = \frac{\mathsf{ST}}{\mathsf{TQ}}$$

$$\Rightarrow \frac{RT}{5} = \frac{9}{6}$$

$$\Rightarrow RT = \frac{5 \times 9}{6}$$

Also,

$$\frac{PT}{PR} = \frac{TQ}{SQ}$$

$$\Rightarrow \frac{5}{10} = \frac{6}{SQ}$$

$$\Rightarrow$$
 SQ = $\frac{6 \times 10}{5}$

Answer 11.

In ΔCGB and ΔAGP

$$\angle$$
CGB = \angle AGP (vertically opposite angles)

$$\angle GAP = \angle GCB$$
 (AD||BC, therefore alternate angles)

Therefore,
$$\triangle CGB \sim \triangle AGP$$
 (AA axiom)

$$\therefore \frac{CG}{GA} = \frac{BC}{AP}$$

$$\Rightarrow \frac{3}{5} = \frac{12}{AP}$$

$$\Rightarrow$$
 AP = $\frac{5 \times 12}{3}$

Answer 12.

(i) In ∆OBQ and ∆OPC

$$\angle OQB = \angle OPC = 90^{\circ}$$
 (QC and BP are altitudes)

$$\angle QOB = \angle POC$$
 (vertically opposite angles)

Therefore, \triangle OBQ \sim \triangle OPC

$$\Rightarrow \frac{PC}{OP} = \frac{QB}{OQ}$$

$$\Rightarrow$$
 PC x OQ = QB x OP

(ii) Since ΔOBQ ~ ΔOPC

$$\frac{OC}{PO} \times \frac{OC}{PC} = \frac{OB}{OB} \times \frac{OB}{OO}$$

$$\Rightarrow \frac{OC^2}{PC \times PO} = \frac{OB^2}{QB \times QO}$$

$$\Rightarrow \frac{OC^2}{OB^2} = \frac{PC \times PO}{QB \times QO}$$

Answer 13.

In \triangle PQS and \triangle QTR

$$\angle PQS = \angle TQR$$
 (vertically opposite angles)

$$\angle SPQ = \angle QRT$$
 (alternate angles)

Therefore, $\Delta PQS \sim \Delta QTR$

$$\Rightarrow \frac{PQ}{QS} = \frac{QR}{QT}$$

$$\Rightarrow \frac{PQ}{12} = \frac{15}{10}$$

$$\Rightarrow PQ = \frac{15 \times 12}{10}$$

Also,

$$\Rightarrow \frac{QS}{PS} = \frac{QT}{RT}$$

$$\Rightarrow \frac{12}{PS} = \frac{10}{6}$$

$$\Rightarrow PS = \frac{6 \times 12}{10}$$

$$\Rightarrow$$
 PQ = 7.2cm

Answer 14.

In Δ PQA and Δ DQC

$$\angle PQA = \angle DQC$$
 (vertically opposite angles)

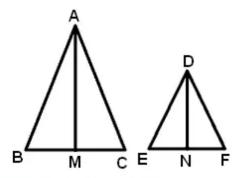
$$\angle APQ = \angle QDC$$
 (alternate angles since AB||DC)

Therefore, △PQA ~ △DQC

$$\therefore \frac{QQ}{QD} = \frac{QA}{PQ}$$

$$\Rightarrow$$
 CQ \times PQ = QA \times QD

Answer 15.



Since △ABC ~ △DEF

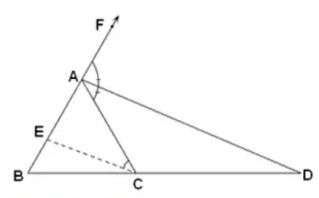
$$\angle B = \angle E$$

$$\angle AMB = \angle DNE$$
 (Both are right angles)

Therefore, △ANB ~ △DNE

$$\therefore \frac{AM}{DN} = \frac{AB}{DE}$$

Answer 16.



In ∆ABC, CE||AD

$$\therefore \frac{BD}{CD} = \frac{AB}{AE}....(i)$$

(By Basic Proportionality theorem)

AD is the bisector of ∠CAF

$$\angle FAD = \angle CAD.....(ii)$$

Since CE||AD

Therefore,

$$\angle ACE = \angle CAD.....(iii)$$
 (alternate angles)

$$\angle AEC = \angle FAD.....(iv)$$
 (corresponding angles)

From (ii), (iii) and (iv) $\angle AEC = \angle ACE$

In ΔAEC,

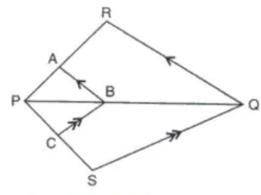
 $\angle AEC = \angle ACE$

⇒ AC = AE(v) (Equal angles have equal sides opposite to them)

From (i) and (v)

$$\frac{\text{BD}}{\text{CD}} = \frac{\text{AB}}{\text{AC}}$$

Answer 17.



In △PQR, AB||RQ

$$\therefore \frac{PA}{PR} = \frac{PB}{PQ}.....(i) (By Basic Proportionality theorem)$$

In ΔPQS, BC||SQ

$$\therefore \frac{PC}{PS} = \frac{PB}{PQ}.....(ii) (By Basic Proportionality theorem)$$

From (i) and (ii)

$$\frac{PC}{PS} = \frac{PA}{PR}$$

Answer 18.

In \triangle ABC, DE||AC

$$\therefore \frac{BE}{EC} = \frac{BD}{DA}.....(i)(By Basic Proportionality theorem)$$

In ∆ABP, CD||AP

$$\therefore \frac{BC}{CP} = \frac{BD}{DA}.....(ii) (By Basic Proportionality theorem)$$

From (i) and (ii)

$$\frac{BE}{EC} = \frac{BC}{CP}$$

Answer 19.

In \triangle ABD and \triangle APQ,

$$\angle BDA = \angle PQA = 90^{\circ}$$

$$\angle A = \angle A$$

Therefore, △ABD ~ △APQ (AA axiom)

And hence,
$$\frac{AB}{AP} = \frac{BD}{PQ}$$

Answer 20.

In Δ PMS and Δ MQN

 $\angle PMS = \angle NMQ$ (vertically opposite angles)

 \angle SPM = \angle MQN (alternate angles, since PS||QN)

Therefore, △PMS ~ △MQN

$$\therefore \frac{SP}{PM} = \frac{MQ}{QN} \quad(i)$$

In ΔPMS and ΔMRS

 $\angle PMS = \angle MSR$ (alternate angles, since PM||SR)

SM = SM

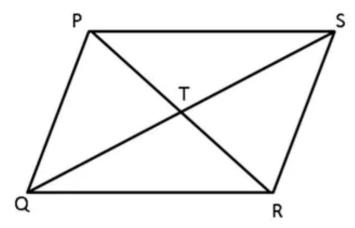
Therefore, Δ PMS $\sim \Delta$ MRS

$$\therefore \frac{\mathsf{SP}}{\mathsf{PM}} = \frac{\mathsf{MR}}{\mathsf{SR}} \quad(ii)$$

From (i) and (ii)

$$\therefore \frac{\mathsf{SP}}{\mathsf{PM}} = \frac{\mathsf{MQ}}{\mathsf{QN}} = \frac{\mathsf{MR}}{\mathsf{SR}}$$

Answer 21A.



Consider APTQ and ARTS,

$$\frac{PT}{TR} = \frac{QT}{TS} = \frac{1}{2}$$
 (Given)

 $\angle PTQ = \angle RTS$ (Vertically Opposite angles)

⇒ ∆PTQ ~ ∆RTS (SAS criterion for Similarity)

Answer 21B.

Consider ∆PTQ and ∆RTS,

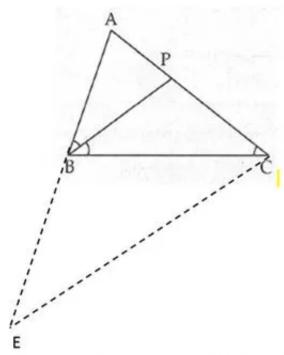
$$\frac{PT}{TR} = \frac{QT}{TS} = \frac{1}{2}$$
 (Given)

 \angle PTQ = \angle RTS (Vertically Opposite angles)

$$\Rightarrow$$
 \triangle PTQ \sim \triangle RTS (SAS criterion for Similarity)

$$\Rightarrow \frac{\text{TP}}{\text{TQ}} = \frac{\text{TR}}{\text{TS}}$$
 (Re arranging the terms)

Answer 22A.



a Construction: Draw CE | BP and produce AB to E.

Proof:BP||EC

 \angle PBC = \angle BCE (Alternate angles)

 \angle ABP = \angle AEC (Corresponding angles)

Also, ∠ABP = ∠PBC

⇒∠BCE = ∠BEC

So, BE = BC

In ΔAEC,

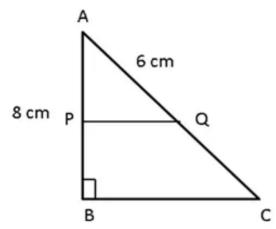
 $\frac{AP}{PC} = \frac{AB}{BE}$

 $\Rightarrow \frac{AP}{PC} = \frac{AB}{BC}$

 \Rightarrow BC \times AP = PC \times AB

b. Note: It is not possible to prove this part due to inadequate data.

Answer 23.



In right - angled ∆ABC,

PQ||BC

$$\Rightarrow \frac{\mathsf{PA}}{\mathsf{AB}} = \frac{\mathsf{QA}}{\mathsf{AC}}$$

$$\Rightarrow \frac{1}{3} = \frac{6}{AC}$$

By Pythagoras Theorem,

$$BC^2 = AC^2 - AB^2$$

$$\Rightarrow BC^2 = 18^2 - 8^2$$

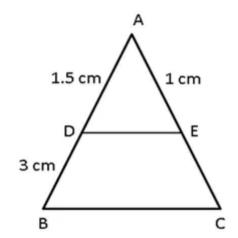
$$\Rightarrow$$
 BC² = 324 - 64

Ex 16.2

Answer 1.

$$\triangle$$
ABC \sim \triangle PRQ
 \triangle \rightarrow P, B \leftrightarrow R, C \leftrightarrow Q
 \angle A \sim \angle P
 \angle B \sim \angle R
 \angle C \sim \angle Q
AB \sim PR, BC \sim RQ, AC \sim PQ

Answer 2.



DE || BC

$$\frac{AD}{AB} = \frac{AE}{AC}$$

$$\Rightarrow \frac{1.5}{4.5} = \frac{1}{AC}$$

$$\Rightarrow AC = 3 \text{ cm}$$

Answer 3.

Since the two triangles are similar, so the ratio of the corresponding sides are equal. Let x and y be the sides of the triangle, where y is the longest side.

$$\frac{3}{5} = \frac{4.5}{x} \Rightarrow x = 7.5 \text{ cm}$$

$$\frac{5}{6} = \frac{7.5}{y} \Rightarrow y = 9 \text{ cm}$$

So, the sides of the triangles are 4.5 cm, 7.5 cm and 9 cm.

Answer 4.

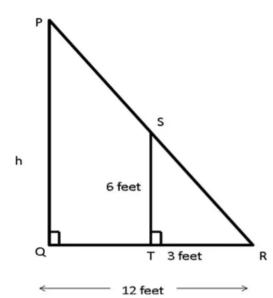
We know that,

for two similar triangles, ratio of the corresponding sides is equal to ratio of the perimeters of the triangles.

$$\Rightarrow$$
 Ratio of the corresponding sides = $\frac{8}{16} = \frac{1}{2}$

that is, ratio of the corresponding sides is 1:2.

Answer 5.



Harmeet and the pole will be perpendicular to the ground.

In ΔPQR and ΔSTR,

 \angle PQR = \angle STR (Both are right angles)

$$\angle$$
PRQ = \angle SRT (common angle)

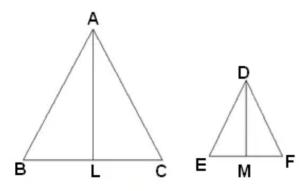
 Δ PQR ~ Δ STR (AA criterion for similarity)

$$\frac{PQ}{ST} = \frac{QR}{TR}$$

$$\Rightarrow \frac{h}{6} = \frac{12}{3}$$

Hence, the height of the pole is 24 feet.

Answer 6.



The ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding altitudes.

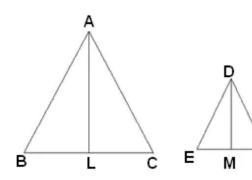
$$\therefore \frac{\text{area}(\Delta ABC)}{\text{area}(\Delta PQR)} = \frac{AL^2}{DM^2}$$

$$\Rightarrow \frac{16}{9} = \frac{AL^2}{1.8^2}$$

$$\Rightarrow AL^2 = \frac{16 \times 3.24}{9}$$

$$\Rightarrow$$
 AL² = 5.76

Answer 7.



The ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding sides.

$$\frac{\text{area}(\Delta ABC)}{\text{area}(\Delta PQR)} = \frac{AB^2}{DE^2}$$

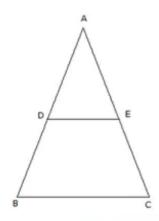
$$\Rightarrow \frac{169}{121} = \frac{26^2}{DE^2}$$

$$\Rightarrow DE^2 = \frac{121 \times 676}{169}$$

$$\Rightarrow DE^2 = 484$$

Answer 8.

⇒ DE = 22cm



Area(\triangle ADE) = area(trapezium BCED)

$$\Rightarrow$$
 Area(ΔADE) + Area(ΔADE) = area(trapezium BCED) + Area(ΔADE)
 \Rightarrow 2 Area(ΔADE) = Area(ΔABC)

In △ADE and △ABC,

$$\angle ADE = \angle B$$
 (corresponding angles)

$$\angle A = \angle A$$

Therefore, △ADE ~ △ABC

$$\therefore \frac{\text{area}(\Delta \text{ADE})}{\text{area}(\Delta \text{ABC})} = \frac{\text{AD}^2}{\text{AB}^2}$$

$$\Rightarrow \frac{\text{area}(\Delta ADE)}{2 \times \text{area}(\Delta ADE)} = \frac{AD^2}{AB^2}$$

$$\Rightarrow \frac{1}{2} = \left(\frac{AD}{AB}\right)^{2}$$

$$\Rightarrow \frac{AD}{AB} = \frac{1}{\sqrt{2}}$$

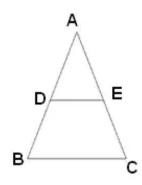
$$\Rightarrow AB = \sqrt{2}AD$$

$$\Rightarrow AB = \sqrt{2}(AB - BD)$$

$$\Rightarrow (\sqrt{2} - 1)AB = \sqrt{2}BD$$

$$\Rightarrow \frac{BD}{AB} = \frac{\sqrt{2} - 1}{\sqrt{2}} = \frac{2 - \sqrt{2}}{2}$$

Answer 9.



$$AD:DB = 2:3$$

$$AB = AD + DB = 2+3 = 5$$

(i)
$$\frac{\text{area}(\Delta ADE)}{\text{area}(\Delta ABC)} = \frac{AD^2}{AB^2}$$

$$\Rightarrow \frac{\text{area}(\Delta ADE)}{\text{area}(\Delta ABC)} = \frac{2^2}{5^2}$$

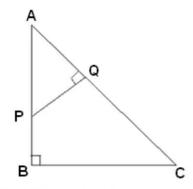
$$\Rightarrow \frac{\text{area}(\Delta ADE)}{\text{area}(\Delta ABC)} = \frac{4}{25}$$

(ii)
$$\frac{\text{area}(\text{trapeziumEDBC})}{\text{area}(\Delta ABC)} = \frac{\text{area}(\Delta ABC) - \text{area}(\Delta ADE)}{\text{area}(\Delta ABC)}$$

$$\Rightarrow \frac{\text{area(trapeziumEDBC)}}{\text{area(}\Delta ABC)} = \frac{25 - 4}{25}$$

$$\Rightarrow \frac{\text{area(trapeziumEDBC)}}{\text{area(ΔABC)}} = \frac{21}{25}$$

Answer 10.



In AAQP and AABC

$$\angle A = \angle A$$

$$\angle PQA = \angle ABC$$
 (right angles)

Therefore, △AQP ~ △ABC

(i) By Pythagoras theorem,

$$BC^2 = AC^2 - AB^2$$

$$\Rightarrow$$
 BC² = 10² - 8²

$$\Rightarrow$$
 BC² = 100 - 64

$$\Rightarrow$$
 BC² = 36

Area (
$$\triangle ABC$$
) = $\frac{1}{2} \times AB \times BC$

Area (
$$\triangle ABC$$
) = $\frac{1}{2} \times 8 \times 6$

Area (
$$\triangle$$
ABC) = 24cm²

Since ∆AQP ~ ∆ABC

$$\frac{\text{Area}(\Delta AQP)}{\text{Area}(\Delta ABC)} = \frac{PQ^2}{BC^2}$$

$$\Rightarrow \frac{\text{Area}(\Delta AQP)}{24} = \frac{3^2}{6^2}$$

$$\Rightarrow$$
 Area(\triangle AQP) = $\frac{9 \times 24}{36}$

$$\Rightarrow$$
 Area(\triangle AQP) = 6cm²

(ii) Area (trapezium EDBC) = Area (ΔABC) - Area (ΔΑQΡ)

Area (trapezium EDBC) = $24 - 6 = 18 \text{ cm}^2$

$$\frac{\text{Area}(\text{TrapeziumEDBC})}{\text{Area}(\Delta ABC)} = \frac{18}{24}$$

$$\Rightarrow \frac{\text{Area}(\text{TrapeziumEDBC})}{\text{Area}(\triangle ABC)} = \frac{3}{4}$$

Area (trapezium EDBC): Area ($\triangle ABC$) = 3:4

Answer 11.

(i) Image length = 6 cm, Actual length = 4 cm.

Scale factor =
$$\frac{\text{Image length}}{\text{Actual length}} = \frac{6}{4}$$

Scale factor = 1.5

Since the scale factor > 1

- ⇒Type of size transformation = enlargement
- (ii) Actual length = 12 cm, Image length = 15 cm

Scale factor =
$$\frac{\text{Image length}}{\text{Actual length}} = \frac{15}{12}$$

Scale factor = 1.25

Since the scale factor > 1

- \Rightarrow Type of size transformation = enlargement
- (iii) Image length = 8 cm, Actual length = 20 cm.

Scale factor =
$$\frac{Image\ length}{Actual\ length} = \frac{8}{20}$$

Scale factor = 0.4

Since the scale factor < 1 and >0

- ⇒Type of size transformation = reduction
- (iv) Actual area = 64m2, Model area=100cm2

Actual area =
$$64 \times 10000 \text{ cm}^2 = 640000 \text{ cm}^2$$

Scale factor =
$$\sqrt{\frac{\text{Model Area}}{\text{Actual Area}}} = \sqrt{\frac{100}{640000}} = \sqrt{\frac{1}{6400}} = \frac{1}{80}$$

Scale factor = 0.0125

Since the scale factor < 1 and >0

- ⇒ Type of size transformation = reduction
- (v) Model area = 75cm², Actual area = 3m²

Scale factor =
$$\sqrt{\frac{\text{Model Area}}{\text{Actual Area}}} = \sqrt{\frac{75}{30000}} = \sqrt{\frac{1}{400}} = \frac{1}{20}$$

Scale factor = 0.05

Since the scale factor < 1 and >0

⇒Type of size transformation = reduction

(vi) Model volume = 200 cm3, Actual volume = 8 m3

Actual volume = $8 \times 1000000 \text{ cm}^2 = 8000000 \text{ cm}^2$

Scale factor =
$$\sqrt{\frac{\text{Model Volume}}{\text{Actual Volume}}} = \sqrt{\frac{200}{8000000}} = \sqrt{\frac{1}{40000}} = \frac{1}{200}$$

Scale factor = 0.005

Since the scale factor < 1 and >0

⇒ Type of size transformation = reduction

Answer 12.

(i)
$$\frac{Image\ length}{Actual\ length}$$
 = Scale factor

$$\frac{B'C'}{8} = 0.6$$

(ii)
$$\frac{\text{Image length}}{\text{Actual length}} = \text{Scale factor}$$

$$\frac{A'B'}{AB} = 0.6$$

$$\Rightarrow AB = \frac{5.4}{0.6}$$

Answer 13.

(i)
$$\frac{\text{Image length}}{\text{Actual length}} = \text{Scale factor}$$

$$\frac{A'B'}{AB} = 5$$

$$\Rightarrow$$
 A'B'=4×5

(ii)
$$\frac{Image\ length}{Actual\ length}$$
 = Scale factor

$$\frac{B'C'}{BC} = 5$$

$$\Rightarrow$$
 BC= $\frac{16}{5}$

Answer 14.

$$Scale \, factor = \, \frac{I \, mage \, length}{Actual \, length}$$

Scale factor =
$$\frac{12}{8}$$
 = 1.5

$$\frac{X'Y'}{XY} = 1.5$$

$$\Rightarrow$$
 X'Y'=1.5×12

$$\frac{X'Z'}{XZ} = 1.5$$

$$\Rightarrow$$
 X'Z'=21cm

Answer 15.

(i) Actual length of AB =
$$3 \times 250000 \text{ cm}$$

= $\frac{3 \times 250000}{100 \times 1000} \text{km}$

$$AB = 7.5 \text{ km}$$

$$= \frac{4 \times 250000}{100 \times 1000} \text{km}$$

$$= 10 km$$

$$BC = 10 \text{ km}$$

Area(
$$\triangle ABC$$
) = $\frac{1}{2} \times AB \times BC$

Area(
$$\triangle ABC$$
) = $\frac{1}{2} \times 7.5 \times 10 \text{km}^2$

Area(
$$\triangle$$
ABC) = 37.5km²

Area of plot =
$$37.5 \text{ km}^2$$

Answer 16.

 $1.2 \text{m} \times 75 \text{ cm} \times 2 \text{ m} = 1.2 \text{m} \times 0.75 \text{ m} \times 2 \text{ m}$

Scale factor = 1:20

Length = 2m

Actual length = $20 \times length = 20 \times 2 = 40 \text{m}$

Breadth = $0.75 \, \text{m}$

Actual breadth = $20 \times breadth = 20 \times 0.75 = 15m$

Height = 1.2 m

Actual height = $20 \times height = 20 \times 1.2 = 24.0 \text{m}$

Actual dimensions are = 24m x 15m x 40m

Answer 17.

Scale factor = 1:50000

(i) area of land represented on the map:

$$40 \text{ Sq km} = 40 \text{ X} (100 \times 1000)^2 [as 1 \text{ km} = 100000 \text{ cm}]$$

$$=40X10^{10}$$

$$\frac{\text{Area}(\text{map})}{\text{Area}(\text{land})} = \text{Scale}$$

$$\frac{\text{Area(map)}}{40 \times 10^{10}} = \frac{1}{(50000)^2}$$

Area(map) =
$$\frac{40 \times 10^{10}}{(50000)^2} = \frac{4000}{25}$$

$$Area(map) = 160cm^2$$

(ii) 1 cm on the map = 50,000 cm on the land (as the scale is 1:50000)

1 km = 100000 cm = 2 X 50000 cm

$$\frac{\text{distance}(\text{map})}{\text{distance}(\text{land})} = \text{Scale}$$

$$\frac{1}{\text{distance}(\text{land}) \times (100000)} = \frac{1}{(50000)}$$

Hence 1 cm on map =
$$\frac{50000}{100000}$$

$$= 0.5 \, \text{km}.$$

Answer 18.

(i) 1 cm on the map = 200,000 cm on the land (as the scale is 1:200000)

$$1 \, \text{km} = 100000 \, \text{cm}$$

$$\frac{\text{distance}(\text{map})}{\text{distance}(\text{land})} = \text{Scale}$$

$$\frac{2}{\text{distance}(\text{land}) \times (100000)} = \frac{1}{(200000)}$$

Hence 2 cm on map =
$$\frac{2 \times 200000}{100000}$$

= 4 km

(ii) 1 cm on the map = 200,000 cm on the land (as the scale is 1:200000)

$$1 \text{ cm}^2 \text{ on the map} = (200000)^2 \text{ on the land}$$

$$1 \text{ km} = 100000 \text{ cm} \Rightarrow 1 \text{ km}^2 = 100000 \times 100000 \text{ cm}^2$$

$$\frac{\mathsf{distance}(\mathsf{map})}{\mathsf{distance}(\mathsf{land})} = \mathsf{Scale}$$

$$\frac{2}{\text{distance}(\text{land}) \times (100000)^2} = \frac{1}{(200000)^2}$$

Hence 2 cm² on map =
$$\frac{2 \times 200000 \times 200000}{100000 \times 100000}$$
$$= 8 \text{ km}^2.$$

(iii) area of land represented on the map:

$$20 \text{ Sq km} = 20 \text{ X} (100 \text{ x} 1000)^2 [as 1 \text{ km} = 100000 \text{ cm}]$$

$$= 20X10^{10}$$

$$\frac{\text{Area}(\text{map})}{\text{Area}(\text{land})} = \text{Scale}$$

$$\frac{\text{Area(map)}}{20 \times 10^{10}} = \frac{1}{(200000)^2}$$

Area(map) =
$$\frac{20 \times 10^{10}}{(200000)^2} = \frac{20}{4}$$

$$Area(map) = 5cm^2$$

Answer 19.

Scale = 1:20000

(i) 1 cm on the map = 20000 cm on the land (as the scale is 1:20000)

$$1 \, \text{km} = 100000 \, \text{cm}$$

$$\frac{\text{distance(map)}}{\text{distance(land)}} = \text{Scale}$$

$$\frac{6}{\text{distance(land)} \times 100000} = \frac{1}{20000}$$

Hence 6 cm on map =
$$\frac{6 \times 20000}{100000}$$

= 1.2 km.

(ii) 1 km = 100000 cm

$$4 \, \text{km} = 400000 \, \text{cm}$$

$$\frac{\text{distance}(\text{map})}{\text{distance}(\text{land})} = \text{Scale}$$

$$\frac{\text{distance}(\text{map})}{400000} = \frac{1}{20000}$$

$$4 \text{ km distance on map} = \frac{400000}{20000}$$
$$= 20 \text{ cm}$$

(iii) area of lake represented on the map:

$$12 \text{ Sq km} = 12 \text{ X} (100 \text{ x} 1000)^2 \text{ [as 1 km} = 100000 \text{ cm]}$$

= $12 \text{X} 10^{10}$

$$\frac{\text{Area}(\text{map})}{\text{Area}(\text{land})} = \text{Scale}$$

$$\frac{\text{Area(map)}}{12 \times 10^{10}} = \frac{1}{(20000)^2}$$

Area(map) =
$$\frac{12 \times 10^{10}}{(20000)^2} = \frac{1200}{4}$$

$$Area(map) = 300cm^2$$

Answer 20.

Scale = 1:40

(i) The length of the model = 15 cm

The actual length =
$$15 \times 40 = 600 \text{ cm} = \frac{600}{100} = 6\text{m}$$

(ii) Volume of the truck = 64 m³

$$\frac{\text{volume(model)}}{\text{volume(truck)}} = \text{Scale}$$

$$\frac{\text{volume(model)}}{64 \times (100)^3} = \frac{1}{(40)^3}$$

$$\text{Volume(model)} = \frac{64000000}{64000}$$

$$\text{Volume(model)} = 1000 \text{cm}^3$$

 $\frac{\text{(iii)}}{\text{Area(model)}} = \text{Scale}$

$$\frac{30 \times (100)^2}{\text{Area}(\text{truck})} = \frac{1}{(40)^2}$$

Area(truck) = $30 \times 1600 \times 10^4$

Area(truck) = $4.8 \times 10^8 \text{cm}^2$

Answer 21.

Scale = 1:500

(i) The length of the model = 1.2 m

The actual length = $1.2 \times 500 = 600 \text{ m}$

(ii)
$$\frac{\text{Area}(\text{deck model})}{\text{Area}(\text{deckship})} = \text{Scale}$$

$$\frac{1.6 \times 100 \times 100}{\text{Area}(\text{deckship}) \times 100 \times (1000)^2} = \frac{1}{(500)^2}$$

$$\text{Area}(\text{deckship}) = \frac{1.6 \times 2500}{10000}$$

(iii) Volume of the ship = 1 km3

Area(deckship) = 0.4km²

$$\frac{\text{volume(model)}}{\text{volume(ship)}} = \text{Scale}$$

$$\frac{\text{volume(model)}}{1 \times (1000)^3} = \frac{1}{(500)^3}$$

$$\text{Volume(model)} = \frac{10000000000}{1250000000}$$

$$\text{Volume(model)} = 8\text{m}^3$$

Answer 22.

scale = 1:25000

(i) In rectangle ABCD,

$$AB = 12 \text{ cm}, BC = 16 \text{ cm}$$

AC is the diagonal.

By Pythagoras theorem

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 12^2 + 16^2$$

$$AC^2 = 144 + 256 = 400$$

$$AC = 20 \times 25000 cm$$

$$\Rightarrow AC = \frac{20 \times 25000}{100 \times 1000} \text{km}$$

$$\Rightarrow$$
 AC = $5km$

(ii) Area ABCD = $12 \times 16 \times 25000 \times 25000 \text{ cm}^2$

$$= \frac{12 \times 16 \times 25000 \times 25000}{100 \times 1000 \times 1000 \times 1000} \text{km}^2$$

$$= \frac{120000}{10000} \text{km}^2$$

$$= 12 \text{km}^2$$

Answer 23.

Scale = 1:25000

(i) Let AB = 225 cm and BC = 64 cm

Actual length of AB -

$$= \frac{225 \times 25000}{100 \times 1000} \text{km}$$
$$= \frac{5625}{100} \text{km}$$
$$= 56.25 \text{km}$$

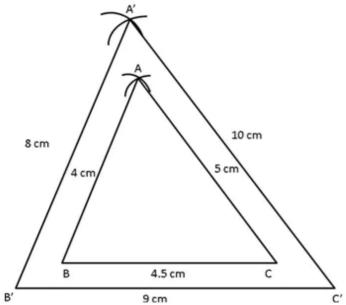
Actual length of BC -

$$= \frac{64 \times 25000}{100 \times 1000} \text{km}$$
$$= \frac{16}{100} \text{km}$$
$$= 16 \text{km}$$

(ii) Area ABC =
$$\frac{1}{2} \times 12 \times 16 \times 25000 \times 25000 \text{ cm}^2$$

= $\frac{1 \times 225 \times 64 \times 25000 \times 25000}{2 \times 100 \times 1000 \times 1000 \times 1000} \text{km}^2$
= $\frac{9000000}{2 \times 10000} \text{km}^2$
= 450km^2

Answer 24.



Steps of Construction of the Image::

- 1. Draw BC measuring 4 cm.
- 2. With B as the centre and radius 4.5 cm, make an arc above BC.
- 3. With C as the centre and radius 5 cm, to cut the previous arc at C.
- 4. ΔABC is the required triangle.

Scale factor =
$$\frac{A'B'}{AB}$$

$$\Rightarrow 2 = \frac{A'B'}{4}$$

$$\Rightarrow$$
 A'B' = 8 cm

Scale factor =
$$\frac{B'C'}{BC}$$

$$\Rightarrow 2 = \frac{B'C'}{4.5}$$

$$\Rightarrow$$
 B'C' = 9 cm

Scale factor =
$$\frac{A'C'}{AC}$$

$$\Rightarrow 2 = \frac{A'C'}{5}$$

$$\Rightarrow$$
 A $'$ C $'$ = 10 cm

Steps of Construction of the Image::

- 1. Draw B'C' measuring 9 cm.
- 2. With B' as the centre and radius 8 cm, make an arc above B'C'.
- 3. With C' as the centre and radius 9 cm, to cut the previous arc at C'.

4. $\Delta A'B'C'$ is the required image of the ΔABC .

On measuring the sides, we get

$$\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC} = Scale factor = 2$$

